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Abstract
The integrability of one-dimensional classical continuum inhomogeneous
biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity
on the soliton of an underlying completely integrable spin model are studied.
The dynamics of the spin system is expressed in terms of a higher order
generalized nonlinear Schrödinger equation through a differential geometric
approach which becomes integrable for a particular choice of the biquadratic
exchange interaction and for linear inhomogeneity. The effect of nonlinear
inhomogeneity on the spin soliton is studied by carrying out a multiple scale
perturbation analysis.

PACS numbers: 31.15.Md, 52.35.Sb, 67.57.Lm, 75.10.Hk, 05.45.−a

1. Introduction

One-dimensional classical continuum Heisenberg ferromagnetic spin chains with different
magnetic interactions act as an interesting class of nonlinear dynamical systems exhibiting a
rich variety of integrability properties and soliton spin excitations. Though the dynamics of
these spin systems are governed by the Landau–Lifshitz (LL) equation [1], a highly nontrivial
vector nonlinear partial differential equation, the space curve mapping procedure developed
by Lakshmanan [2, 3] and the gauge equivalence method proposed by Zakharov and Takhtajan
[4] which were originally used in the case of a one-dimensional classical isotropic Heisenberg
ferromagnetic spin chain were considered to be useful approaches that help to map the LL
equation to the nonlinear Schrödinger (NLS) family of equations. The geometric equivalence
method under space curve mapping was then used by Lakshmanan and his collaborators for
several ferromagnetic spin systems with nontrivial and higher order magnetic interactions as
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well as for some mathematical generalizations of the LL equation and several integrable spin
models identified and the underlying soliton spin excitations explored [5–7]. The classical
Heisenberg ferromagnetic spin chains with biquadratic interaction, Dzyaloshinski–Moriya
interaction and octupole–dipole interaction are some of the physically interesting spin models,
the nonlinear dynamics of which have been understood and integrable models identified in
recent years [5–10]. In this context, the studies of the classical isotropic Heisenberg spin chain
[3] and site-dependent isotropic bilinear spin chain [11, 12] are considered to be pioneering
nonlinear spin models for they were modelled by the completely integrable cubic NLS equation
and an inhomogeneous NLS equation which were considered to be important completely
integrable nonlinear evolution equations in their own respect [11–13]. In this paper, we study
the nonlinear spin dynamics of a one-dimensional classical isotropic biquadratic Heisenberg
spin chain by introducing varying bilinear and biquadratic exchange interactions along the
spin lattice. We try to identify the underlying completely integrable spin models and construct
soliton spin excitations. In the nonintegrable case, we carry out a multiple scale perturbation
analysis to understand the effect of nonlinear inhomogeneity on the spin soliton and also the
perturbed soliton constructed.

The plan of the paper is as follows. In section 2, we present the model and dynamical
equation for the spin system and map the continuous spin chain onto a moving helical space
curve and express the dynamics in terms of the evolution of the curvature and torsion of the
space curve which is found to be equivalent to a generalized inhomogeneous higher order NLS
equation in section 3. In order to see whether the above equation is integrable or not we carry
out Painlevé singularity structure analysis in section 4 and identify the underlying integrable
spin models. After mentioning the integrability properties we carry out a perturbation analysis
to construct a perturbed soliton and to study the effect of nonlinear inhomogeneity in section 5.
The results are concluded in section 6.

2. Model and classical equation of motion

In the case of integrable quantum spin chains with spin magnitude S > 1
2 the Hamiltonians

contain higher order interaction terms in addition to bilinear and biquadratic exchange
interactions. The complete integrability of spin chains with spin magnitude S > 1

2 has
been proved when suitable polynomials in (Si · Si+1) are added to the bilinear Heisenberg spin
chain [14–16]. For instance, when (Si · Si+1)

2 is added it corresponds to a spin one biquadratic
Heisenberg spin chain. But the study of quantum fluctuations in spin systems with S > 1 is
far out of reach. However, in recent years there has been considerable interest in the study of
quantum spin chains with competing bilinear and biquadratic exchange interactions. This is
because in some magnetic materials, the biquadratic exchange interaction plays an important
role. Much effort has been put into understanding the origin of biquadratic interactions
[17–20] and into studying the quantum fluctuations and low temperature properties of a one-
dimensional biquadratic Heisenberg ferromagnet after Haldane’s conjucture was proposed
[21]. When the spin value is large, the quantum fluctuation ceases and it is of interest to
study the Heisenberg spin system in the classical limit. In this context, it may be noted that
when the Hamiltonian contains only bilinear and biquadratic interaction terms, the classical
Heisenberg model of the spin chains leads to completely integrable models exhibiting soliton
spin excitations [6]. When more higher order interaction terms are included in the Hamiltonian,
the dynamics of the corresponding classical spin chain becomes very complicated and it
becomes extremely difficult to solve the same for integrability. Hence in the present paper, we
desist from including higher order terms in the Hamiltonian. It is also of equal interest to study
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the nonlinear spin dynamics of a biquadratic spin system with varying exchange interactions
in the classical limit.

The Heisenberg Hamiltonian for a one-dimensional classical ferromagnetic spin chain
with N spins interacting with their nearest neighbours and characterized by site-dependent
(varying) bilinear and biquadratic exchange interactions can be written as

H = −
∑

i

[Jefi(Si · Si+1) + Jbgi(Si · Si+1)
2] (2.1)

where Si = (
Sx

i , S
y

i , Sz
i

)
, represents the classical three component spin vector and Je and

Jb, respectively, are the bilinear and biquadratic exchange parameters. fi and gi characterize
the variation of the bilinear and biquadratic exchange interactions along the spin chain. The
equation of motion corresponding to the spin Hamiltonian (2.1) can be constructed from [1]

dSi

dt
= {Si ,H}PB. (2.2)

The Poisson bracket on the right-hand side of equation (2.2) for any two arbitrary functions F
and H of spins is defined as

{F,H }PB =
N∑

i=1

3∑
α,β,γ=1

εαβγ

∂F

∂Sα
i

∂H

∂S
β

i

S
γ

i (2.3)

where εαβγ is the complete antisymmetric Levi-Civita tensor. The above spin Poisson bracket
satisfies the same algebraic relations as the usual canonical Poisson bracket. On using our
spin Hamiltonian (2.1) in equation (2.2), we obtain the following discrete equation of motion
for the spins:

dSn

dt
= Sn ∧ {Je(fnSn+1 + fn−1Sn−1) + Jb(gn(Sn · Sn+1)Sn+1 + gn−1(Sn · Sn−1)Sn−1)}. (2.4)

The structure of equation (2.4) demands that the length of the spin vector does not change
with time and hence all the spins are assumed to have unit length

(
S2

n = 1
)
.

Now, in order to understand the spin dynamics, we have to solve the discrete spin
equation (2.4). However, in the low temperature and long wavelength limit one can go to the
continuum limit by assuming that the lattice constant is very small compared to the length
of the lattice. We assume that the spins Sn and the exchange coefficients fn and gn vary
slowly over different distance scales ‘a’ (lattice distance) and ‘b’, respectively. Thus, we
introduce the following series expansions for Sn±1 and fn−1, gn−1 by assuming Sn(t), fn and
gn, respectively as S(x, t), f (x) and g(x) where x is a continuous variable.

Sn±1 = S(x, t) ± a
∂S
∂x

+
a2

2!

∂2S
∂x2

± a3

3!

∂3S
∂x3

+
a4

4!

∂4S
∂x4

+ · · · (2.5a)

(
fn−1

gn−1

)
=

(
f (x)

g(x)

)
− b

∂

∂x

(
f

g

)
+

b2

2!

∂2

∂x2

(
f

g

)
− · · · . (2.5b)

It may be noted that in equations (2.5), the spins have been expanded to O(a4) and the exchange
coefficients only up to O(b2) . In the normal cases ‘a’ and ‘b’ are expected to coincide with
each other. But, nevertheless there may be situations where b �= a. The purpose of introducing
two different lattice spacings for the spin and exchange interactions, respectively, is to identify
the possible inhomogeneous integrable spin models or their perturbations which are generated
for unequal values of a and b. Also, physically this can be justified because inhomogeneity
in magnetic compounds may arise due to the following two factors: [22] (i) if the distance
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between the neighbouring atoms is varying along the lattice as seen in some charge transfer
complexes and in organometallic insulators; (ii) if the atomic wavefunction itself varies from
site to site though the distance between neighbouring atoms is constant as seen in some
magnetic insulators placed in a weak, static or inhomogeneous electric field. Using the
above expansions in the discrete equation of motion (2.4), we obtain the following continuous
equation of motion written to O(albm), l + m = 4:

St = S ∧
{[

A − b

2
Ax +

b2

2
Axx +

a2

2
Jbg(S · Sxx)

]
Sxx +

[
b

a
Ax − b2

2a
Axx

+
a2

3
Jbg(S · Sxxx)

]
Sx +

a2

12
ASxxxx +

ab

6
AxSxxx

}
S2 = 1 (2.6)

where A(x) = Jef (x) + Jbg(x) which is introduced for the sake of simplification in notation.
In equation (2.6), the suffices t and x represent partial derivatives with respect to t and x,
respectively. Equation (2.6) describes the dynamics of spins in a one-dimensional classical
continuum isotropic inhomogeneous biquadratic Heisenberg spin chain which is in the form
of the L–L [1] equation St = S ∧ Feff , where

Feff =
[
A − b

2
Ax +

b2

2
Axx +

a2

2
Jbg(S · Sxx)

]
Sxx

+

[
b

a
Ax − b2

2a
Axx +

a2

3
Jbg(S · Sxxx)

]
Sx +

a2

12
ASxxxx +

ab

6
AxSxxx.

3. A generalized NLS equation and spin dynamics

In order to understand the nonlinear spin dynamics of the inhomogeneous isotropic biquadratic
Heisenberg spin chain more transparently, we map the spin chain at a given instant of time to
the moving space curve in E3 [2, 6]. A local coordinate system ei (i = 1, 2, 3) is formed on
the space curve by identifying the unit spin vector S(x, t) with the unit tangent vector e1(x, t)

of the space curve and defining the unit principal and binormal vectors e2(x, t) and e3(x, t),
respectively in the usual way. The change in orientation of the trihedral ei (i = 1, 2, 3) which
defines the space curve uniquely within rigid motions is determined by the Serret–Frenet (S–F)
equations [23] 

e1x

e2x

e3x


 =


 0 κ 0

−κ 0 τ

0 −τ 0





e1

e2

e3


 (3.1)

where κ ≡ (e1x · e1x)
1
2 and τ ≡ 1

κ2 e1 · (e1x ∧ e1xx) are the curvature and torsion of the space
curve. In view of the above identification and using the S–F equations (3.1), the equation of
motion (2.6) can be rewritten as

e1t =
{
−h̃κτ − a2

12
A(3κxxτ + 3κxτx − κ3τ + κτxx − κτ 3) − ab

6
Ax(2κxτ + κτx)

+
a2

2
Jbgκ3τ

}
e2 +

{
h̃κx +

a2

12
A(κxxx − 6κ2κx − 3κxτ

2 − 3κττx)

+
ab

6
Ax(κxx − κ3 − κτ 2) + h̃xκ − 3a2Jbgκ2κx

}
e3 (3.2)
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where h̃ = (
A − b

2Ax + b2

2 Axx

)
which is again introduced to write the equation in a compact

form. The time evolution of the normals ei , i = 1, 2, 3, can be evaluated by using the S–F
equations and equation (3.2). Thus, after some lengthy algebra eit , i = 1, 2, 3, can be
rewritten as 

e1t

e2t

e3t


 =


 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0





e1

e2

e3


 (3.3)

where

ω1 = 1

κ

{
h̃xκx + h̃(κxx − κτ 2) + (h̃xκ)x +

a2

2
Jbg

(
κ3τ 2 − 6κκ2

x − 3κ2κxx

)
+

a2

12
A

(
κxxxx − 12κκ2

x − 6κ2κxx − 6κxxτ
2 − 12κxτxτ − 3κτ 2

x

− 4κττxx + κ3τ 2 + κτ 4
)

+
ab

4
Ax(κxxx − 4κ2κx − 3κxτ

2 − 3κττx)

+
ab

12
Axx(κxx − κ3 − κτ 2) − abJbgxκ

2κx

}
(3.4a)

ω2 = (h̃κ)x +
a2

12
A(κxxx − 6κ2κx − 3κxτ

2 − 3κττx)

+
ab

6
Ax(κxx − κ3 − κτ 2) − 3

2
a2Jbgκ2κx (3.4b)

ω3 = −h̃κτ − a2

12
A(3κxxτ + 3κxτx − κ3τ + κτxx − κτ 3) − ab

6
Ax(2κxτ + κτx) +

a2

2
Jbgκ3τ.

(3.4c)

Now, the compatibility of equations (3.1) and (3.3), namely (eix)t = (eit )x , leads to the
following evolution equations for the curvature and torsion of the space curve:

κt = −h̃(2κxτ + κτx) − 2h̃xκτ − a2

12
A(4κxxxτ + 6κxxτx − 4κxτ

3 − 6κτ 2τx + 4κxτxx + κτxxx

− 9κ2κxτ − κ3τx) − ab

4
Ax(3κxxτ + 3κxτx − κ3τ + κτxx − κτ 3)

− a2

2
Jbg(6κ2κxτ + κ3τx) (3.5)

τt =
{

κxx

κ
− τ 2 +

κ2

2
+

a2

12
A

(
κxxxx

κ
− 5κxxκ − 25

2
κ2

x − 4ττxx − 6τ 2κxx

κ
− 3τ 2

x − 3τ 4
x

2

− 12κxττx

κ
+ τ 4 − κ2τ 2

2

)
+

a2

2
Jbg

(
κ2τ 2 − 6κ2

x − 3κκxx − 3κ4

4

)}
x

+ Ax

[(
κ2 − κ2

x

κ2
+

3κxx

κ
− τ 2

)
+

b

2

(
−κκx +

κxxκx

κ2
− κxxx

κ
+ 2ττx

)

+
ab

12

(
−4κκxx +

κ4

16
− 3κ2τ 2 − 3κxκxxx

κ2
− 3κxκxxxx

κ2
− 3κ2

x τ 2

κ2
+

9κxττxx

κ

− 3κxττx

κ
+

κxxxx

κ
+

κ3
x

κ
+ 12κxκxx − 3κxκxxτ

2

κ2
− 12κ2

x ττx

κ2
+

9κxτ
2
x

κ
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− 6κxxτ
2

κ
− 3τ 2

x − 4ττxx + τ 4

)]
+ Axx

[
2κx

κ
+

b

2

(
κ2 − κ2

x

κ2
+

3κxx

κ
− τ 2

)

+
b2

12

(
−10κκx − 8κxxκx

κ2
+

11κxxx

κ
− 25ττx − 9

τ 2κx

κ

)]
. (3.6)

The curvature and torsion of the space curve are related to the energy and current densities
of the spin system and thus the spin dynamics is equivalently represented in terms of the
evolution of the curvature and torsion of the space curve. In order to identify the set of coupled
equations (3.5) and (3.6) with more standard nonlinear partial differential equations, we make
the complex transformation [3]

q = κ

2
exp i

∫ x

−∞
τ(x ′, t) dx ′ (3.7)

and obtain the following inhomogeneous generalized NLS equation:

iqt + (hq)xx + 2h |q|2 q + 2q

∫ x

−∞
hx ′ |q|2 dx ′ +

a2A

12

[
qxxxx + K1 |q|2 qxx + K2q

2q∗
xx

+ K3q|qx |2 + K4q
∗q2

x + 3K2q|q|4] +
ab

12
Ax[qxxx + 6 |q|2 qx] = 0 (3.8)

where

h(x) = h̃ +
b2

6
Axx K1 = −12

(
1 +

4Jbg

A

)
K2 = −8

(
1 +

3Jbg

A

)

K3 = −36

(
1 +

8Jbg

3A

)
K4 = −14

(
1 +

24Jbg

7A

)
.

At different orders of the expansion parameters and for different A, equation (3.8) reduces
to different completely integrable equations of the NLS family. For example, at the lowest
order, i.e. at O(a0b0), when A is a constant, equation (3.8) reduces to the completely integrable
cubic NLS equation

iqt + qxx + 2 |q|2 q = 0 (3.9)

and at the same order when A is a linear function of x it reduces to the following inhomogeneous
cubic NLS equation:

iqt + 2Cqx + (Cx + D)[qxx + 2 q|q|2] + 2Cq

∫ x

−∞
|q|2 dx ′ = 0. (3.10)

At O(a2), when a = b and A = constant and for the choice Jbg

A
= −5

12 , equation (3.8) gives
the following completely integrable fourth-order NLS equation:

iqt + qxx + 2 q|q|2 +
a2

12

[
qxxxx + 8|q|2 qxx + 2q2q∗

xx + 4|qx |2 q + 6q∗q2
x + 6 |q|4 q

] = 0.

(3.11)

The above set of three completely integrable NLS families of equations was obtained from
isotropic bilinear [3], isotropic inhomogeneous [11, 12] and isotropic biquadratic [5, 6]
Heisenberg spin chains, respectively, through Lakshmanan’s space curve mapping procedure.
The corresponding LL equation of motion for the completely integrable spin system can be
written as follows:

(i) Isotropic bilinear Heisenberg spin chain [3].

St = S ∧ Sxx. (3.12)
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(ii) Isotropic inhomogeneous bilinear Heisenberg spin chain [11, 12].

St = S ∧ [(Cx + D)Sxx + CSx]. (3.13)
(iii) Isotropic biquadratic Heisenberg spin chain [5, 6].

St = S ∧
[

Sxx +
a2

12

[
Sxxxx − 5

2
(S · Sxx)Sxx − 5

3
(S · Sxxx)Sx

]]
. (3.14)

The integrability properties of the above set of completely integrable equations have been
studied in detail and the spin excitations in the above spin models are governed by spin
solitons.

An inspection of equation (3.8) reveals that in addition to the above, it contains at least
two inhomogeneous higher order equations which may lead to completely integrable spin
models with soliton spin excitations. For instance, in the next higher order assuming that
O(ab) < O(a2) and redefining a → ia we have the following inhomogeneous Hirota-type
equation:

iqt + (hq)xx + 2h q|q|2 + 2q

∫ x

−∞
hx ′ |q|2 dx ′ +

iab

12
Ax[qxxx + 6 |q|2 qx] = 0. (3.15)

Equation (3.15) with A(x) in the form of a linear function of x has been studied in the context
of a generalized x-dependent Hirota equation by carrying out singularity structure analysis
and the integrability properties investigated by constructing the Lax pair and soliton solutions
[24]. Finally, at O(a2), assuming that O(ab) > O(a2), equation (3.7) gives the following
inhomogeneous fourth-order NLS-type equation:

iqt + (hq)xx + 2h q|q|2 + 2q

∫ x

−∞
hx ′ |q|2 dx ′ +

a2A

12

[
qxxxx + K1 |q|2 qxx

+ K2q
2q∗

xx + K3 q|qx |2 + K4q
∗q2

x + 3K2 q|q|4] = 0. (3.16)

Now we seek whether equation (3.16) is also expected to be integrable only when A is a linear
function of x or otherwise. If so, next we will analyse to see what would happen to the spin
excitations when A(x) and hence the inhomogeneity arises in the form of a nonlinear function.
This forms the major task to be carried out in the rest of the paper. We investigate these aspects
by carrying out Painlevé singularity structure analysis followed by multiple scale perturbation
analysis.

4. Singularity structure analysis and spin soliton

In order to pick up completely integrable models underlying equation (3.16), so that the
elementary spin excitations can be expressed in terms of solitons, we carry out Painlevé
singularity structure analysis [25, 26]. The Painlevé analysis is a useful tool to verify whether
the given nonlinear partial differential equation is free from movable critical manifolds so
that the generalized Painlevé property holds. This procedure ensures the single valuedness
of the general solution of the given nonlinear partial differential equation around any
noncharacteristic movable singular manifold when expressed locally as a Laurent series.
The singularity structure analysis which proceeds along three major steps namely (i) finding
the leading order behaviour (ii) identifying resonances and (iii) verifying the existence of a
sufficient number of arbitrary functions is now an established procedure and hence we do not
present the complete details of the analysis here.
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In the following, we rewrite equation (3.16) and its complex conjugate equation by
denoting q and q∗ by E and G, respectively, and defining a new real function R.

iEt + Exx + 2hxEx + hxxE + 2RE +
a2

12
A

[
Exxxx + K1EGExx + K2E

2Gxx

+ K3EExGx + K4GE2
x + 3K2E

3G2
] = 0 (4.1a)

−iGt + Gxx + 2hxGx + hxxG + 2RG +
a2

12
A

[
Gxxxx + K1EGGxx + K2G

2Exx

+ K3GExGx + K4EG2
x + 3K2E

2G3
] = 0 (4.1b)

Rx − 2hxEG − h(EG)x = 0. (4.1c)

We perform Painlevé singularity structure analysis on equations (4.1) by expanding the
functions E,G and R locally in the form of the Laurent series

E = E0(x, t)φp(x, t) +
∑
j=1

Ej(x, t)φp+j (4.2a)

G = G0(x, t)φs(x, t) +
∑
j=1

Gj(x, t)φs+j (4.2b)

R = R0(x, t)φw(x, t) +
∑
j=1

Rj(x, t)φw+j . (4.2c)

Now using the leading order terms of solutions (4.2), i.e. E ∼ E0(x, t)φp(x, t),G ∼
G0(x, t)φs(x, t), R ∼ R0(x, t)φw(x, t) in equations (4.1) and on balancing the dominant
terms, we obtain the following two branches of leading order behaviour:

Branch (i)

p = s = −1 w = −2 (4.3a)

E0G0 = −φ2
x

4
(
1 + 3Jbg

A

) R0 = −hφ2
x

4
(
1 + 3Jbg

A

) . (4.3b)

Branch (ii)

p = s = −1 w = −2 (4.3c)

E0G0 = −4φ2
x R0 = −4hφ2

x . (4.3d)

Now to find the resonances, i.e. the powers at which free coefficients enter into the generalized
expansion, we expand

E = E0φ
p + · · · + α1φ

p+r (4.4)

G = G0φ
s + · · · + α2φ

s+r (4.5)

R = R0φ
w + · · · + α3φ

w+r (4.6)

and substitute in equations (4.1) containing the leading order terms alone. The result yields
 M1 E2

0M2 0
G2

0M2 M1 0
hG0(2 − r) hE0(2 − r) r − 2





α1

α2

α3


 = 0 (4.7)
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where

M1 = (r − 1)(r − 2)(r − 3)(r − 4) + [(r − 1)(K1(r − 2) − K3 − 2K4)

+ 2K1 + 4K2 + K3]E0G0 + 9K2E
2
0G

2
0

and

M2 = [K2(r − 1)(r − 2) − K3(r − 1) + K4 + 2K1] + 6K2E0G0.

On substituting E0G0 in the resonance matrix (4.7), we obtain all real resonances only
for the following set of parametric choices: (a) Jbg

A
= −17

48 and (b)
Jbg

A
= −5

12 . In
the case (a) the two branches merge into a single branch with the leading order results
E0G0 = −4φ2

x, R0 = −4hφ2
x and the resonances, r = −1,−1, 0, 0, 2, 3, 4, 7, 8. Analysing

further, we find that the system admits a logarithmic singularity manifold at r = 0, thereby
destroying the Painlevé nature of the solution and therefore we stop treating case (a) further.
For case (b) we obtain the following two branches:

Branch (i)

E0G0 = −φ2
x R0 = −hφ2

x r = −1, 0, 1, 2, 2, 3, 4, 5, 6. (4.8)

Branch (ii)

E0G0 = −4φ2
x R0 = −4hφ2

x r = −3,−2,−1, 0, 2, 5, 6, 7, 8. (4.9)

In both branches the resonances −1 and 0 correspond to the arbitrariness of the manifold and
of E0 or G0, respectively.

To check whether a sufficient number of arbitrary functions exists without introducing
movable critical singularity manifolds, we substitute the Laurent expansion (4.2) in the
full equation (4.1) and collect coefficients of different powers of φ and obtain R1 =
−2hx + hφxx, R2 = arbitrary and the following compatibility conditions corresponding to
different resonances:
(φ−4, φ−4φ−2): r = 1:

E0G1 + G0E1 = φxx. (4.10)

(φ−3, φ−3φ−1): r =2, 2:

E0G2 − G0E2 = 1

6φ2
x

[−3(E0G0xx − G0E0xx) − 2(φxφxx)x − 4φ2
xx

+ 4(2G0E1x − E0G1x)φx + 4(G0xφx − G0φxx)E1 + 8E0xφxφxx

]
(4.11a)

hxx = 0. (4.11b)

From the above results, we observe that E1 or G1 and E2 or G2 and R2 are arbitrary in addition
to the condition that hxx = 0 implying that h is a linear function of x, say h = Cx +D where C
and D are constants. Proceeding further, we find that a sufficient number of arbitrary functions
enters without introduction of movable critical manifolds at r = 3, 4, 5 and 6. However, as
the compatibility conditions corresponding to these resonances are unwieldy in nature we are
not presenting them here. For branch (ii), we verify that arbitrary functions enter at r = 5, 6, 7
and 8. Thus, equation (4.1) satisfies the Painlevé property and is a candidate to be integrable
when Jbg

A
= −5

12 and h = Cx + D. The integrable form of equation (3.16) can therefore be
written as

iqt + 2Cqx + (Cx + D)[qxx + 2 |q|2 q] + 2Cq

∫ x

−∞
|q|2 dx ′ +

a2

12

[
qxxxx + 8 |q|2 qxx

+ 2q2q∗
xx + 4|qx |2 q + 6q∗q2

x + 6 q|q|4] = 0. (4.12)
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The corresponding spin equation is written as

St = S ∧
[

[(Cx + D) Sxx + CSx] +
a2

12

[
Sxxxx − 5

2
(S · Sxx) Sxx − 5

3
(S · Sxxx) Sx

]]
. (4.13)

The integrability properties of equations (4.12) and (4.13) in the absence of inhomogeneity
have been discussed in detail in [5, 6]. When linear inhomogeneity is present in the system
the Lax pair and soliton solutions can be written as follows [5, 6, 24]. The Lax pair U,V

associated with the AKNS-type linear eigenvalue problem 
x = U
, 
t = V 
, where

 = (
1, 
2)

T corresponding to equation (4.12) can be written as [27]

U =
(−iλ̂ q

−q∗ iλ̂

)
(4.14a)

V = [i |q|2 + iγ̂ [q∗qxx + qq∗
xx − |qx |2 + 3 |q|4] + 2λ̂γ̂ (qq∗

x − qxq∗) − 2iλ̂2[1 + Cx + D

+ 2γ̂ |q|2] + 8iγ̂ λ̂4]σz + iσzMx + iγ̂ [6M2Mxσz + σzMxxx] − 4iγ̂ λ2σzMx

+ 2(Cx + D)M + 2λ̂[M + γ̂ (Mxx − 2M3)] − 8γ̂ λ̂3M (4.14b)

where λ̂ is the spectral parameter and γ̂ = a2A
12 , σz =

(1 0
0 −1

)
, M =

( 0 q

−q∗ 0

)
. Knowing the

Lax pair the multisoliton solutions can be constructed using the inverse scattering transform
(IST) method [28] or using the Bäcklund transformation technique [29, 30]. For example, the
one soliton solution of equation (4.12) is found to be

q(1) = −2ρ sech ζ exp(−2iε) (4.15a)

where

ζ = 2[ρ(δ̂1 + x) − 32γ̂ µ2 + 4(8ρ2 + 1)µρt] + 8D

∫
(µ2 − ρ2) dt + δ̂1 (4.15b)

ε = µ(δ̂2 + x) + 2[(µ2 − ρ2)t − 4γ̂ (µ4 + ρ4)t + 24µ2ρ2t] + 4D

∫
µρ dt + δ̂2 (4.15c)

where ρ and µ correspond to the scattering parameter and δ̂1 and δ̂2 are phase constants. The
corresponding spin components can be written as [6, 31, 32]

Sx = −2ρ

(µ2 + ρ2)

[
µ cos

(
µ

ρ

)
ζ − ρ sin

(
µ

ρ

)
ζ tanh ζ

]
sech ζ (4.16a)

Sy = −2ρ

(µ2 + ρ2)

[
µ sin

(
µ

ρ

)
ζ + ρ cos

(
µ

ρ

)
ζ tanh ζ

]
sech ζ (4.16b)

Sz = 1 −
[

2ρ2

(µ2 + ρ2)

]
sech2ζ. (4.16c)

5. Effect of nonlinear inhomogeneity under perturbation

The results of the singularity structure analysis in the previous section showed that the
inhomogeneous biquadratic spin system becomes completely integrable and the elementary
spin excitations are expressed in terms of solitons only when the exchange inhomogeneity
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appears in the form of a linear function. Now the question arises as to what will be the effect
of a nonlinear inhomogeneity on the spin soliton. We try to find an answer for this question by
carrying out a multiple scale perturbation analysis by considering the inhomogeneous cubic
NLS equation at the lower order from the generalized NLS equation (3.8).

iqt + (hq)xx + 2h |q|2 q + 2q

∫ x

−∞
hx ′ |q|2 dx ′ = 0. (5.1)

We have considered the equation at the lower order for the perturbation analysis because the
inhomogeneity does not enter into the terms at O(a2) and hence it is sufficient to analyse
equation (5.1) to understand the effect of inhomogeneity on the spin soliton. The effect of
higher order terms, i.e. terms at O(a2) (discreteness effect) (without inhomogeneity), on the
NLS soliton as perturbation is studied in [5, 6]. When h = h0 = constant, equation (5.1)
reduces to the completely integrable cubic NLS equation (3.9) and when h is a linear function
of x say h(x) = Cx + D, where C and D are constants, it reduces to the completely integrable
inhomogeneous NLS equation. We now substitute

h(x) = h0 + λh1(x) (5.2)

where λ is a small parameter and h1 is a nonlinear function of x, in equation (5.1) and after
suitable rescaling of t and redefinition of λ we get,

iqt + qxx + 2 |q|2 q + λ[(h1q)xx + 2h1 |q|2 q + 2q

∫ x

−∞
h1x ′ |q|2 dx ′] = 0. (5.3)

5.1. Perturbation method

We now carry out the multiple scale perturbation analysis laid down by Kodama and Ablowitz
[33] by treating terms proportional to λ in equation (5.3) as perturbation. Considering
q0 as the exact solution corresponding to the unperturbed part (λ = 0), we introduce
certain fast variables �i (i = 1, 2, 3, . . . ,M) and a slow variable T = λt and parameters
Pi (i = 1, 2, 3, . . . ,M) which depend on the slow variables [33, 34]. The unperturbed
solution q0 in terms of these new variables then takes the form

q0 = q̂0(�1,�2, . . . , �M; T ;P1, P2, . . . , PM). (5.4)

However, for one soliton solution, it is enough to introduce only one fast variable. Now we
expand q in terms of a power series in λ.

q = q0 + λq1 + · · ·. (5.5)

Using equation (5.5) in the perturbed equation (5.3) and collecting the coefficients of different
powers of λ, we obtain a system of linear differential equations with variable coefficients.
By solving these equations recursively we obtain the perturbed solution upon taking care of
the secularity problem appropriately and using the boundary conditions. In what follows we
apply this multiple scaling analysis to equation (5.3).

When λ = 0, equation (5.3) reduces to the completely integrable cubic NLS equation (3.9)
which possesses N-soliton solutions. The envelope one soliton solution of equation (3.9) can
be written as

q = η sech η(θ − θ0) exp[iξ(θ − θ0) + i(σ − σ0)] (5.6a)

where

θt = −2ξ θx = 1 σt = η2 + ξ 2 σx = 0. (5.6b)
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We write η, ξ, θ, θ0 and σ0 as functions of the new time scale T = λt now. Hence, the soliton
solution of equation (5.3) can be written as

q = q̂(θ, T ; λ) exp[iξ(θ − θ0) + i(σ − σ0)]. (5.7)

Under the assumption of quasi-stationarity, equation (5.3) can be written as

−η2q̂ + q̂θθ + 2q̂2q̂∗ = λF(q̂) (5.8)

where

F(q̂) = i[−q̂T + 2h1θ ξ q̂ + 2h1ξ q̂θ ] − [ξT (θ − θ0) − ξθ0T ] + (h1q̂)θθ

−h1ξ
2q̂ + 2h1 |q̂|2q̂ + 2q̂

∫ θ

−∞
h1θ ′ |q̂|2 dθ ′. (5.9)

Expanding q̂ in terms of λ as

q̂(θ, T ; λ) = q̂0(θ, T ) + λq̂1(θ, T ) + · · · (5.10)

where q̂0 = η sech η(θ − θ0) and substituting equation (5.10) in equation (5.8) at O(λ) we get

−η2q̂1 + q̂1θθ + 2q̂2
0 q̂∗

1 + 4q̂2
0 q̂1 = F1(q̂0). (5.11a)

The right-hand side of equation (5.11a) is of the form

F1(q̂0) = i[−q̂0T + 2h1θ ξ q̂0 + 2h1ξ q̂0θ ] − [ξT (θ − θ0) − ξθ0T ] + (h1q̂0)θθ

−h1ξ
2q̂0 + 2h1 |q̂0|2q̂0 + 2q̂0

∫ θ

−∞
h1θ ′ |q̂0|2 dθ ′. (5.11b)

Substituting q̂1 = φ̂1 + iψ̂1 (φ̂1 and ψ̂1 are real) in equation (5.11), we obtain

L1φ1 ≡ −η2φ1 + φ1θθ + 6q̂2
0φ1 = Re F1(q̂0) (5.12a)

L2ψ1 ≡ −η2ψ1 + ψ1θθ + 2q̂2
0ψ1 = Im F1(q̂0) (5.12b)

where Re F1(q̂0) and Im F1(q̂0) are the real and imaginary parts of F1(q̂0) given by

Re F1(q̂0) = −[ξT (θ − θ0) − ξθ0T ] + (h1q̂0)θθ

−h1ξ
2q̂0 + 2h1 |q̂0|2q̂0 + 2q̂0

∫ θ

−∞
h1θ ′ |q̂0|2 dθ ′ (5.12c)

Im F1(q̂0) = [−q̂0T + 2h1θ ξ q̂0 + 2h1ξ q̂0θ ] (5.12d)

and L1 and L2 are self-adjoint operators. On solving equations (5.12) for the specific form of
inhomogeneity h1, we obtain the perturbed soliton solution.

5.2. Evolution of amplitude and velocity of the soliton

It may be noted that q̂0θ and q̂0 are solutions of the homogeneous parts of equations (5.12a)
and (5.12b), respectively, and hence the secularity conditions yield∫ ∞

−∞
q̂0θ Re F1 dθ = 0 (5.13)

and ∫ ∞

−∞
q̂0 Im F1 dθ = 0. (5.14)
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Now, in order to carry out the integration in equations (5.13) and (5.14), we have to supply the
explicit form of the inhomogeneity h1 in equations (5.12c) and (5.12d ). As the results of the
Painlevé singularity structure analysis show that the inhomogeneous biquadratic spin chain
model becomes integrable when the inhomogeneity appears in the form of a linear function
of x, we are interested in inhomogeneities other than the linear function and here we consider
a simple nonlinear inhomogeneity in the form h1(x) = Bx2 + Cx + D, where B, C and D are
constants. Using the above form of h1 in equations (5.12c) and (5.12d ) and making use of them
and q̂0θ and q̂0 in equations (5.13) and (5.14) and integrating (for details, see the appendix),
we obtain

ηT = 2Kξ(η − 2) (5.15)

and

ξT = 2K(η2 − ξ 2) (5.16)

where K = (C +N) and N = Bη[(θ − θ0) tanh η(θ − θ0)]∞−∞ which is assumed to be finite by
choosing θ0 appropriately. Equations (5.15) and (5.16) describe the evolution of the amplitude
and velocity of the soliton, respectively. It should be noted that when the inhomogeneity is
absent the amplitude and velocity of the soliton do not change as time passes.

To understand the nature of the evolution of the amplitude and velocity of the soliton, we
solve the set of coupled equations (5.15) and (5.16). On differentiating equation (5.15) with
respect to T once, using equation (5.16) in the resultant equation and after rescaling T suitably,
we obtain

ηT T − (η − 2)η2 = 0. (5.17)

Integrating equation (5.17) once, we get(
dη

dT

)2

− 1

2
η4 +

4

3
η3 = C0 (5.18)

where C0 is the constant of integration. The left-hand side of (5.18) corresponds to the energy
of the soliton which oscillates under the quartic potential. Now, we analyse equation (5.18) in
two different cases, namely when C0 = 0 and C0 �= 0 separately.

Case (i): C0 = 0. Choosing the integration constant C0 = 0, equation (5.18) can be easily
integrated to give

η = 8

3

[
1 − 4

9
(T + C1)

2

]−1

(5.19)

where C1 is the second integration constant. C1 can be evaluated by assuming the initial
amplitude of the soliton η(0) as η0. Now, after finding C1 and transforming T → (

T − 1
2

)
,

equation (5.19) can be written as

η = − 6

Q
(5.20a)

where

Q =
[(

T − 1

2

)2

+ 3

(
1 − 8

3η0

) 1
2
(

T − 1

2

)
− 6

η0

]
. (5.20b)
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Figure 1. Evolution of the amplitude (η) of the soliton when C0 = 0 (equation (5.20)) under a
quadratic inhomogeneity when the initial amplitude is η0 = 3.0.

Knowing η, the velocity ξ of the soliton can be straightaway calculated by substituting
equation (5.20) in the expression ξ = ηT

K(η−2)
. Thus, the velocity of the soliton can be

expressed as

ξ = 3

KQ(Q + 3)

[
1 − 3

(
1 − 8

3η0

) 1
2

− 2T

]
. (5.21)

In figures 1 and 2, we have plotted the amplitude (η) and velocity (ξ ) of the soliton
as given in equations (5.20) and (5.21) by assuming that the soliton is initially (T = 0) at
rest (ξ = 0) and has an initial amplitude of η0 = 3.0. As time passes, the amplitude and
velocity of the soliton slowly increase and reach a maximum value. At this point the soliton
suddenly flips and starts moving in the opposite direction and slowly dies out (damps) due
to the inhomogeneity along the chain. As the velocity of the soliton is found to be inversely
proportional to the inhomogeneity, in highly inhomogeneous magnetic media, the velocity
of the soliton decreases very rapidly and also the soliton dies out very quickly. It should be
noted that if the soliton does not flip when it moves with very high speed it may explode
suddenly.

Case (ii) C0 �= 0. When C0 �= 0, equation (5.18) can be integrated to give η and hence also
ξ which can be written in terms of Jacobian elliptic functions [35]. For example (when C0 is
chosen as 7

81 for convenient plotting of η and ξ ) η can be explicitly written in the form

η(T ) =
(ε− − C2ε+) − ε+cn

(
T
g

)
(δ− − C2δ+) − δ+cn

(
T
g

) (5.22)
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Figure 2. Evolution of the velocity (ξ) of the soliton when C0 = 0 (equation (5.21)) under a
quadratic inhomogeneity when the initial amplitude is η0 = 3.0.

where

ε± = η2a2 ± η1b2 δ± = a2 ± b2 C2 = 2(η1 − η0)b2

η0δ+ − ε+

g = 1√
a2b2

a2
1 = −(η3 − η∗

3)
2

4
b1 = (η3 + η∗

3)

2

a2
2 = (η1 − b1)

2 + a2
1 b2

2 = (η2 − b1)
2 + a2

1 .

Here η0 = η(0) as before and η1 and η2 are the two real roots of the polynomial η4 − 8
3η3 +

7
81 = 0 and η3 is the complex root of the same. Using η, ξ can be written as

ξ =
(ε+δ − δ+ε−)sn

(
T
g

)
dn

(
T
g

)
Kg

{[
(δ− − C2δ+) − δ+cn

(
T
g

)][
(ε− − C2ε+) − ε+cn

(
T
g

)] − 2
[
(δ−C2δ+) − δ+cn

(
T
g

)]2}
(5.23)

where sn
(

T
g

)
, cn

(
T
g

)
and dn

(
T
g

)
are Jacobian elliptic functions.

In figures 3 and 4, we have plotted the amplitude (η) and velocity (ξ ) of the soliton from
equations (5.22) and (5.23). In this case also, the amplitude of the soliton grows rapidly
and suddenly flips. However, unlike the previous case this occurs periodically. Since η is
expressed in terms of Jacobian elliptic functions, in fact, it happens doubly periodically. As
in the previous case, here also the velocity of the soliton grows rapidly and when it is at
its highest speed and when it flips it suddenly moves in the opposite direction. Once again
the velocity increases and the soliton turns back in the next flip. Interestingly, unlike the
previous case here the soliton flip and its turn around happen doubly periodically. From
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Figure 3. Evolution of the amplitude (η) of the soliton when C0 = 7
81 (equation (5.22)) under a

quadratic inhomogeneity when the initial amplitude is η0 = 3.0.
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Figure 4. Evolution of the velocity (ξ) of the soliton when C0 = 7
81 (equation (5.23)) under a

quadratic inhomogeneity when the initial amplitude is η0 = 3.0.

equation (5.18) one can observe that C0 represents the energy of the soliton and the soliton
now oscillates doubly periodically under the potential

(−η4

2 + 4
3η3

)
(forced oscillations) in the
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inhomogeneous magnetic medium. Thus, C0 acts as a source of energy for the soliton to flip
doubly periodically without dying and of course dies out when C0 = 0.

5.3. Perturbed solution

The perturbed solution of equation (5.3) can be constructed by solving equations (5.12) for
φ1 and ψ1 using the form of the inhomogeneity as h1 = B(θ − θ0)

2 + C(θ − θ0) + D. The
homogeneous part of equation (5.12a) admits the following two particular solutions:

φ11 = sech η(θ − θ0) tanh η(θ − θ0) (5.24)

φ12 = −1

η

[
sech η(θ − θ0) − 3

2
η(θ − θ0) sech η(θ − θ0) tanh η(θ − θ0)

−1

2
tanh η(θ − θ0) sinh η(θ − θ0)

]
. (5.25)

Knowing two particular solutions, the general solution can then be written in the form

φ1 = δ1φ11 + δ2φ12 − φ11

∫ θ

−∞
φ12 Re F1 dθ ′ + φ12

∫ θ

−∞
φ11 Re F1 dθ ′ (5.26)

where δ1 and δ2 are arbitrary constants of integration and Re F1 is as given in equation (5.12c).
Substituting φ11, φ12 and Re F1 in (5.26), evaluating the integrals and after lengthy calculations
we obtain the solution as

φ1 =
[
−δ2

η
+

15B

2η2
− 9

4η
(ξθ0T + σ0T + 2B) − 1

2
�

[
5B(θ − θ0)

2 − C(θ − θ0) +
9

2η
D

]

− K

η
(θ − θ0) +

[
5B

η2
+

D�

η2

]
ln cosh η(θ − θ0)

]
sech η(θ − θ0)

+

[−15B

2η2
+

7

4η
(ξθ0T + σ0T + 2B) +

1

4
�[15B(θ − θ0)

2 + 7D]

− 4B

η2
ln cosh η(θ − θ0)

]
sech3η(θ − θ0) +

[
δ1 +

3δ2

2
η(θ − θ0)

+
3

4
(θ − θ0)(ξθ0T + σ0T + 2B) +

1

2
�

(
−3K

η2
+ 5Bη2(θ − θ0)

2

−
[
Cη2 − 5D

2
η +

6B

η
(θ − θ0)

])]
sech η(θ − θ0) tanh η(θ − θ0)

−
[

3

2η
B�(θ − θ0)

]
sech η(θ − θ0) tanh η(θ − θ0) ln cosh η(θ − θ0)

+

[
1

4η2
[−2K� − 9η2 − ξ 2)(2B(θ − θ0) − 2C)

]
sinh η(θ − θ0)

−
[

B

2η2
� tanh η(θ − θ0)

]
sinh η(θ − θ0) ln cosh η(θ − θ0)

+

[
δ2

2η
+

1

4η
(ξθ0T + σ0T + 2B + D�)

]
tanh η(θ − θ0) sinh η(θ − θ0)

− 3B

η2
�

∞∑
k=1

22k(22k − 1)B2k(η(θ − θ0))
2k+1

(2k + 1)2k!
sech η(θ − θ0) tanh η(θ − θ0)

(5.27)
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where � = (η2 − ξ 2) and B2k is the Bernoulli number. Before writing the final form of φ1,
we remove the secular terms which make the solution unbounded by choosing the arbitrary
constant δ2 as

δ2 = −1

2
(ξθ0T + σ0T + 2B + D�). (5.28)

Using the boundary conditions φ1(0)|θ0=0 = φ1θ (0)|θ0=0 = 0, we obtain

δ1 = 3

2η2
K� (5.29)

and once again the same value of δ2 as given in equation (5.28). Using these results in the
solution given in equation (5.26) the final form of the general solution φ1 can be written as

φ1 =
[

3

4
(ξθ0T + σ0T + 2B)

(
(θ − θ0) − 3

η

)
+ D�(θ − θ0)

+
15B

2η2
− 1

2
�

[
5B(θ − θ0)

2 − C(θ − θ0) +
9

2η
D − 1

η
K(θ − θ0)

]

+

(
5B

η2
+

D�

η2

)
ln cosh η(θ − θ0)

]
sech η(θ − θ0)

+

[−15B

2η2
+

7

4η
(ξθ0T + σ0T + 2B) +

1

4
�[15B(θ − θ0)

2 + 7D]

− 4B

η2
ln cosh η(θ − θ0)

]
sech3η(θ − θ0) +

[
1

2
�(θ − θ0)(5Bη2(θ − θ0) − Cη2

+
11D

2
η − 6B

η
− 3B

η
ln cosh η(θ − θ0))

]
sech η(θ − θ0) tanh η(θ − θ0).

(5.30)

Following the same procedure ψ1 can also be obtained by solving equation (5.12b). The
solutions of the homogeneous part of equation (5.12b) read

ψ11 = sech η(θ − θ0) (5.31)

ψ12 = 1

2η
[η(θ − θ0) sech η(θ − θ0) + sinh η(θ − θ0)]. (5.32)

As before, the general solution of equation (5.12b) can be written in the form

ψ1 = δ3ψ11 + δ4ψ12 − ψ11

∫ θ

−∞
ψ12 Im F1 dθ ′ + ψ12

∫ θ

−∞
ψ11 Im F1 dθ ′ (5.33)

where δ3 and δ4 are arbitrary constants. Substituting the solutions ψ11 and ψ12 from
equations (5.31) and (5.32) in equation (5.33), putting Im F1 after evaluating the value
of it for the above quadratic inhomogeneity and after finding the value of the integrals in
equation (5.33), the general solution for ψ1 after making lengthy calculations can be written
as

ψ1 =
[
δ3 +

(θ − θ0)

2

[
δ4

2
+ ℘(θ − θ0) +

η

2
(θ − θ0)T +

1

η

[
ξη2(θ − θ0)

2 +
C

2
(θ − θ0)

+ D − Dξη2

]]]
sech η(θ − θ0) +

[
(θ − θ0)

2

[
−℘(θ − θ0)

− η

2
(θ − θ0)T − ξη[B(θ − θ0)

2 − C(θ − θ0) + D]
]

+
1

2
η(θ − θ0)T + ξηD
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− ξB

η2

∞∑
k=1

22k(22k − 1)B2k(η(θ − θ0))
2k+1

(2k + 1)2k!

]
sech3η(θ − θ0) +

[
1

2

[
℘

η
(θ − θ0)

+
1

2
(θ − θ0)T − 11

2
Bξ(θ − θ0)

2 + Dξ

]]
sech η(θ − θ0) tanh η(θ − θ0)

+

[
1

η
ξB(θ − θ0)

]
sech η(θ − θ0) ln cosh η(θ − θ0)

+

[
6

η
Bξ(θ − θ0) sinh η(θ − θ0)

]
ln cosh η(θ − θ0)

+
1

2η2
[℘ − 2Bξη(θ − θ0) − Cξη] sinh η(θ − θ0) tanh η(θ − θ0)

+

[
1

4η
[2δ4 − η(θ − θ0)T − 2Dηξ ]

]
sinh η(θ − θ0) (5.34)

where ℘ = Kξ(η − 2). The secular terms can be removed by choosing

δ4 = η

2
(θ − θ0)T + 2Dξ. (5.35)

The boundary conditions ψ1(0)|θ0=0 = ψ1θ (0)|θ0=0 = 0, give

δ3 = Dξη (5.36a)

δ4 = −Dξη. (5.36b)

Using these results, the final form of the general solution ψ1 is written as

ψ1 =
[
Dξη +

[
−1

2
Dξη + ℘(θ − θ0) +

1

η

[
ξη2(θ − θ0)

2

+
C

2
(θ − θ0) + D − 3Dξη2

]]
(θ − θ0)

2

]
sech η(θ − θ0)

+

[ [
−℘(θ − θ0) − ξη[B(θ − θ0)

2 − C(θ − θ0) + D]
(θ − θ0)

2

]
− 2Dξη2

+ ξηD − ξB

η2

]
sech3η(θ − θ0) +

[
1

2

[
1

η
℘(θ − θ0) − 2Dξη

− 11

2
ξB(θ − θ0)

2 + ξD

]]
sech η(θ − θ0) tanh η(θ − θ0)

+

[
1

η
Bξ(θ − θ0)

]
sech η(θ − θ0) ln cosh η(θ − θ0). (5.37)

Thus, the first-order perturbed soliton solution q̂1 is obtained as

q̂1 =
[

3

4
(ξθ0T + σ0T + 2B)

(
(θ − θ0) − 3

η

)
+ D�(θ − θ0)

+
15B

2η2
− 1

2
�

[
5B(θ − θ0)

2 − C(θ − θ0) +
9

2η
D − 1

η
K(θ − θ0)

]

+

(
5B

η2
+

D�

η2

)
ln cosh η(θ − θ0)

]
sech η(θ − θ0)

+

[−15B

2η2
+

7

4η
(ξθ0T + σ0T + 2B) +

1

4
�[15B(θ−θ0)

2 + 7D]
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− 4B

η2
ln cosh η(θ − θ0)

]
sech3η(θ − θ0) +

[
1

2
�(θ − θ0)

(
5Bη2(θ − θ0)

−Cη2 +
11D

2
η − 6B

η
−3B

η
ln cosh η(θ − θ0)

)]
sech η(θ − θ0) tanh η(θ − θ0)

+ i

[[
Dξη +

[
−1

2
Dξη + ℘(θ − θ0) +

1

η

[
ξη2(θ − θ0)

2

+
C

2
(θ − θ0) + D − 3Dξη2

]]
(θ − θ0)

2

]
sech η(θ − θ0)

+

[[
−℘(θ − θ0) − ξη[B(θ − θ0)

2 − C(θ − θ0) + D]
(θ − θ0)

2

]

− 2Dξη2 + ξηD − ξB

η2

]
sech3η(θ − θ0) +

[
1

2

[
1

η
℘(θ − θ0) − 2Dξη

− 11

2
ξB(θ − θ0)

2 + ξD

]]
sech η(θ − θ0) tanh η(θ − θ0)

+

[
1

η
Bξ(θ − θ0)

]
sech η(θ − θ0) ln cosh η(θ − θ0)

]
. (5.38)

Knowing q̂1 the general perturbed solution can be written down. Using these results the spin
components can be constructed using the known differential geometric considerations.

6. Conclusions

In this paper, we have investigated the integrability of the classical one-dimensional Heisenberg
inhomogeneous ferromagnetic spin chain and also the effect of inhomogeneity on the soliton
of the associated completely integrable spin model. The spin dynamics of the system has
been studied by mapping the spin chain onto a moving space curve. The resultant invariant
equations are expressed in the form of an inhomogeneous higher order generalized NLS
equation. By carrying out Painlevé singularity structure analysis we found that the system is
in general not integrable and becomes integrable for linear inhomogeneity and for a specific
choice of biquadratic exchange interaction. After mentioning the Lax pair and soliton solutions
of the integrable equation, we investigate the effect of nonlinear (quadratic) inhomogeneity
on the soliton of an underlying integrable model of the inhomogeneous spin system at lower
order. For this, we carried out a multiple scale perturbation analysis and constructed the
perturbed soliton. More interestingly we found that under the influence of the nonlinear
inhomogeneity, the amplitude and velocity of the soliton undergo curious changes. As time
passes the amplitude and velocity of the soliton increase and when it moves with very high
speed it flips suddenly and turns back and slows down, once again flips and this happens
doubly periodically.
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Appendix. Evaluating the secularity conditions

Using the value of Re F1 from equation (5.12c) in the secularity condition∫ ∞

−∞
q̂0θ Re F1 dθ ≡

∫ ∞

−∞
q̂0θ

[
q̂0(h1θθ + 2h1|q̂0|2 − h1ξ

2 + ξθ0T + σ0T

− ξT (θ − θ0) + 2
∫ θ ′

−∞
h1θ ′ |q0|2 dθ ′ + 2h1θ q̂0θ + h1q0θθ

]
dθ = 0 (A1)

where h1(θ) = B(θ − θ0)
2 + C(θ − θ0) + D and using q̂0 and their derivatives in the above

equation, we obtain∫ ∞

−∞

[
ξT (θ − θ0) − ξθ0T − σ0T − (η2 − ξ 2)(B(θ − θ0) + D) − 2B

− 2η2

{∫ θ ′

−∞
(2B(θ − θ0) + C) sech2η(θ ′ − θ ′

0) dθ ′
}

sech2η(θ − θ0)

× tanh η(θ − θ0) + 2η(2B(θ − θ0) + C)sech2η(θ − θ0)

− 2η(2B(θ − θ0) + C)sech4η(θ − θ0)

]
dθ = 0. (A2)

Evaluating the above integrals, equation (A2) gives

ξT = 2K(η2 − ξ 2). (A3)

Similarly, substituting the value of Im F1 from equation (5.12d ) we obtain∫ ∞

−∞
q̂0 Im F1 dθ ≡ q̂0[q̂0T + 2ξh1θ + 2ξh1q̂0θ ] dθ = 0. (A4)

Making use of q̂0 we get∫ ∞

−∞
[[ηT + 2ηξh1θ ] sech2η(θ − θ0) − [η(η(θ − θ0))T + 2η2ξh1]

× sech2η(θ − θ0) tanh η(θ − θ0)] dθ = 0. (A5)

Evaluating equation (A4) we obtain

ηT = 2Kξ(η − 2). (A6)
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